10 Axiomatic Derivations

We now aim for an alternative characterization of the set of formulas of L that are valid in different classes of frames. We will begin with a system K, whose theorems are all and only formulas of L that are valid in every frame. We will later consider extensions of that system, whose theorems are all and only formulas valid in every frame in a certain class, e.g., reflexive, symmetric, transitive, etc.

The Minimal Modal Logic K

The system consists of an infinite set of axioms and two rules of inference.

Definition 10.1 (The System K) The minimal modal logic K is an axiom system with an infinite set of axioms and two rules of inference. The axioms of K include:

  • substitution instances of tautologis of propositional logic

  • substitution instances of the axiom: (K)(pq)(pq)

The rules of inference of K include:

  • Modus Ponens (MP):

(MP)φ,(φψ)/ψ

  • Necessitation (N)

(N)φ/φ

We explain what is for a finite sequence of formulas to be a proof in the axiom system we just now introduced:

Definition 10.2 (Proof in K) A proof or derivation in the axiom system K is, as usual, a finite sequence of formulas (χ1,,χn) of L, each of them

  • an axiom of K
  • the outcome of an application of MP to two prior formulas
  • the outcome of an application of N to a prior formula

The theorems of K those formulas of L for which there is a proof in the system:

Definition 10.3 (Theorem of K) A formula φ of L is a theorem of K, written Kφ, if, and only if, some proof in K ends with the formula φ.

The axioms of the minimal modal logic K are valid in all frames, and the rules of inference preserve validity in all frames. So, every theorem of K is valid in every frame.

Example 10.1 A substitution instance of axiom K is valid in all frames. (K)(pq)(pq) Consider a substitution instance of axiom K: (φψ)(φψ). Let (W,R) be a frame and let (W,R,V) be a model based on that frame. We argue that (W,R,V)(φψ)(φψ). To that end, let wW and suppose that (W,R,V),w(φψ) and (W,R,V),wφ. If uW is such that Rwu, then (W,R,V),uφψ and (W,R,V)φ. Therefore, (W,R,V),uψ. Generalizing, we find (W,R,V),wψ.

How to Construct Proofs

While it is a purely mechanical procedure to check whether a finite sequence of formulas is a proof in a given system, it may take some skill and experience to find one. There is no perfectly general recipe for this, but as a general piece of advice, it helps to spend some time considering the question of why the formula should be valid. Since proofs and theorems of K track validity in all frames, the question of validity may on occasion guide us to a proof.

One important observation at this poins is that we are entitled to propositional inferences within the system. If two formulas are propositionally equivalent, then you should feel free to move from one to the other. Here is a formal justification of that fact.

Proposition 10.1 If Kφ1,,Kφn and ψ is derivable from {φ1,,φ} in propositional logic, then Kψ.

Proof. Given the Deduction Theorem for Propositional Logic, if ψ is derivable from {φ1,,φ} in propositional logic, then φ1(φ2((φnψ))) is a theorem of propositional logic and thus a theorem of K. By repeated applications of Modus Ponens, we infer Kψ.

In what follows, we will use the annotation ‘PL’ to indicate that a line is justified by propositional logic or by propositional logic applied to some prior lines.

Distribution Rules

We are similarly able to justify derived rules of inference, which will help us take a more direct route between two steps in a proof.

Proposition 10.2 If Kφψ, then Kφψ.

Proof. We may transform a derivation of φψ into a derivation of φψ. 1φψGiven2(φψ)RN 13(φψ)(φψ)K[φ/p,ψ/q]4φψMP 2,3

This justifies a derived rule of inference we annotate RK: (RK)If φψ then φψ We are now able to justify a related rule of inference: (RK)If φψ then φψ

Proposition 10.3 If Kφψ, then Kφψ.

Proof. We may transform a proof of φψ into a proof of φψ 1φψGiven2¬ψ¬φPL 13¬ψ¬φRK 24¬¬φ¬¬ψPL 37φψDef  4

More generally, if Q is a string of modal operators, we are in a position to justify the derived rule of inference:

(RKQ)If Kφψ then KQφQψ

Example 10.2 Consider the derived rule of inference:

(RK)If Kφψ then Kφψ We may transform a derivation of φψ into a derivation of φψ: 1φψGiven2φψRK 13φψRK 2

Some Theorems of K

We may exploit some of these derived rules in order to prove some theorems of K.

Proposition 10.4 K(φψ)(φψ)

Proof. 11(φψ)(¬ψ¬φ)PL2(φψ)(¬ψ¬φ)RK 13(¬ψ¬φ)(¬ψ¬φ)K[¬ψ/p,¬φ/q]4(¬ψ¬φ)(¬¬φ¬¬ψ)PL5(φψ)(¬¬φ¬¬ψ)PL 2,3,46(φψ)(φψ)Def  6

Example 10.3 Given those observations, it is simple to justify:

Kp(pq)q

The crucial observation is that the formula p(pq)q is propositionally equivalent to (pq)(pq). So, a proof of the latter immediately gives us a proof of the former.

Other well-known theorems of the minimal logic K are principles such as the distribution of over and the distribution of over .

Proposition 10.5 K(φψ)(φψ)

Proof. The key to this proof is to find appropriate tautologies on which to apply a distribution rule. 1(φψ)φPL2(φψ)φRK 13(φψ)ψPL4(φψ)ψRK 35(φψ)(φψ)PL 2,4

Proposition 10.6 K(φψ)(φψ)

Proof. This proof combines the use of a distribution rule with an instance of K. 1φ(ψ(φψ))PL2φ(ψ(φψ))RK 13(ψ(φψ))(ψ(φψ))K[ψ/p,(φψ)/q]4φ(ψ(φψ))PL 2,35(φψ)(φψ)PL 4

Proposition 10.7 K(φψ)(φψ)

Proof. The strategy behind the proof is to exploit the fact that is a dual of , that is, is ¬¬, and the fact that the negation of a disjunction is propositionally equivalent to a conjunction of negations. When we combine them with the fact that distributes over , we have a proof ot the principle.

1¬(φψ)¬¬¬(φψ)Def 2¬(φψ)¬(φψ)PL 13¬(φψ)(¬φ¬ψ)PL4¬(φψ)(¬φ¬ψ)RK 35(¬φ¬ψ)(¬φ¬ψ)Prop 7.56(¬φ¬ψ)¬(¬¬φ¬¬ψ)PL7¬(¬¬φ¬¬ψ)¬(φψ)Def 8¬(φψ)¬(φψ)PL 5,6,79¬(φψ)¬(φψ)PL 2,810(φψ)(φψ)PL 9

Proposition 10.8 K(φψ)(φψ)

Proof. This time we exploit the fact that a conjunction of necessitations entails the necessitation of a conjunction. 1¬(φψ)¬(¬¬φ¬¬ψ)Def 2¬(¬¬φ¬¬ψ)(¬φ¬ψ)PL3(¬φψ)(¬φ¬ψ)Prop 7.64¬(φψ)(¬φ¬ψ)PL 1,2,35(¬φ¬ψ)¬(φψ)PL6(¬φ¬ψ)¬(φψ)RK 57¬(φψ)¬(φψ)PL 4,68¬(φψ)¬¬¬(φψ)PL9¬¬¬(φψ)¬(φψ)Def 10¬(φψ)¬(φψ)PL 7,8,911(φψ)(φψ)PL 10

We conclude with another helpful theorem of K.

Proposition 10.9 K(φψ)(φψ)

Proof. 1¬(φψ)(ψ¬φ)PL2¬(φψ)(ψ¬φ)RK 13(ψ¬φ)(ψ¬φ)K[ψ/p,¬φ/q]4¬(φψ)(ψ¬φ)PL 2,35¬(ψ¬φ)¬¬(φψ)PL 46¬(ψ¬φ)(φψ)Def 7(ψ¬¬φ)¬(ψ¬φ)PL8(ψ¬¬φ)(φψ)PL 6,79(ψφ)(ψ¬¬φ)Def 10(φψ)(ψφ)PL11(φψ)(φψ)PL 8,9,10

Part of the interest of the minimal modal logic K is that it provides an alternative characterization of the set of validities in all frames. That is, we will eventually prove that a formula φ of L is a theorem of K if, and only if, φ is valid in all frames. Before we do, however, we will consider some extensions of the minimal modal logic.

Normal Modal Systems

We will focus on extensions of the minimal modal logic that result from K when we supplement its axioms with all substitution instances of further modal axioms.

Definition 10.4 (Normal Modal Logic) A normal modal Σ logic is an axiom system, which results from K when we add to its axioms all substitution instances of further modal axioms.

Example 10.4 The modal logic KT is the system which results from the minimal modal logic K when we supplement its axioms with all substitution instances of the axiom: (T)pp The theorems of the normal modal logic KT those formulas of L for which there is a proof in the system KT. We write KTφ to indicate that φ is a theorem of T.

Two notable normal modal systems are S4 and S5, respectively:

Example 10.5 The modal logic S4 is the system which results from the minimal modal logic K when we supplement its axioms with all substitution instances of the axioms: (T)pp (4)pp The theorems of the normal modal logic S4 those formulas of L for which there is a proof in the system S4. We write S4φ to indicate that φ is a theorem of T.

Example 10.6 The modal logic S5 is the system which results from the minimal modal logic K when we supplement its axioms with all substitution instances of the axioms: (T)pp (5)pp The theorems of the normal modal logic S5 those formulas of L for which there is a proof in the system S5. We write S5φ to indicate that φ is a theorem of S5.

The Reduction of Pure Modalities

We conclude the survey of the landscape of normal modal logics with a discussion of two salient normal systems, KT4 (S4), and KT5 (S5), and their ability to collapse certain iterations of modalities.

S4

The normal modal logic S4 results from K when we supplement its axioms with all substitution instances of the axioms: (T)pp (4)pp

Neither KTB nor KB4 extend S4.

Proposition 10.13 S4KTB

Proof. This is because axiom 4, pp, is not valid in every reflexive and symmetric frame, witness the model we used in example 7.10.

(W,R,V),w1pp

Proposition 10.14 S4KB4

Proof. This is because axiom T, pp, is not valid in every symmetric and transitive frame. To that purpose, consider the model based on a symmetric and transitive frame depicted below.

(W,R,V),w1pp

On the other hand, S4 extends neither KTB nor KB4.

Proposition 10.15 KB4S4 and KTBS4

Proof. This is because axiom B, pp. is not valid in every reflexive and transitive frame. To that purpose, consider the model based on a reflexive and transitive frame depicted below.

(W,R,V),w1pp

One reason S4 is of interest is that its axioms have seemed plausible to some on certain interpretations of the modal operators, e.g., in terms of knowledge and metaphysical modality. But another reason to consider S4 is that it allows one to collapse certain iterations of modalities.

Definition 10.6 (Pure Modality) A pure modality is a finite iteration of zero or more occurrences of the modal operators and .

Definition 10.7 (Entailment) A modality α entails a modality β relative to a modal system Σ if, and only if, Σαφβφ.

Definition 10.8 (Equivalence) A modality α is equivalent to a modality β relative to a modal system Σ if, and only if, Σαφβφ.

One way in which a normal modal system may enable one to reduce a pure modality to another is by means of one of four main reduction laws: R1φφR2φφR3φφR4φφ

Example 10.14 If a normal modal system Σ proves all four reduction laws, then Σ allows one to collapse a modal formula such as ¬¬φ into the much simpler φ.

We use the definition of in terms of ¬ and and a rule of replacement for equivalent modal formulas to bring occurrences of negation to the front: ¬¬φ¬¬¬¬φ¬¬φ¬¬¬¬φφ The four reduction laws now allow us to reduce each pure modality of depth greater than one to one with one fewer pure modality. φR1φR3φR2φR4 So, the initial modal formula ¬¬φ is in fact equivalent to φ relative to Σ.

For the general study of pure modalities, we distinguish two directions in each of the four reduction laws: R1aφφR1bφφR2aφφR2bφφR3aφφR3bφφR4aφφR4bφφ

We are now in a position to explain how different normal modal systems enable us to collapse some iterations of pure modalities into simpler ones.

Proposition 10.16 KT delivers R1a, R2a, R3a, and R4a.

Proposition 10.17 S4 delivers R1, R2, R3a, and R4a.

There are at most seven inequivalent pure modalities relative to S4, which are depicted in the diagram below. A modality is understood to entail another modality in the diagram if it is connected to it by an upwards link:

Pure Modalities in S4

We now justify the entailments depicted by the diagram. There is, first, entailment 1 in the diagram:

Proposition 10.18 S4φφ

1φφT[φ/p]2φφRK 13φφ4[φ/p]4φφPL 2,3

On to entailment 2:

Proposition 10.19 S4φφ

1φφT[φ/p]2φφRK 13φφRK 2

Entailments 3 and 4 are instances of T and T, respectively, in which occurrences of p are uniformly replaced with occurrences of φ.

For entailments 5 and 6, we rely on a lemma:

Lemma 10.1 S4φφ

For one direction, we argue: 1φφT[φ/p]2φφRK 13φφ4[φ/p]4φφPL 2,3 For the other, we reason:

1φφT[φ/p]2φφRK 13φφ4[φ/p]4φφPL 2,35φφRK 4

We are now in a position to justify entailments 6 and 7, respectively:

Proposition 10.20 S4φφ

1φφT[φ/p]2φφRK 13φφRK 24φφRK 35φφLemma 7.16φφPL 4,5

Proposition 10.21 S4φφ

1φφT[φ/p]2φφRK 13φφ4[φ/p]4φφPL 2,3

We conclude that there is an upper bound on the number of inequivalent pure modalities relative to S4.

Proposition 10.22 There are exactly seven inequivalent pure modalities relative to S4.

Proof. There are exactly three inequivalent modalities of depth 1.

There are two new inequivalent modalities of depth 2:

The reason for this is that and collapse into and , respectively, relative to S4.

There are two new inequivalent modalities of depth 3:

The reason is that collapses into and collapses into .

There are no new inequivalent modalities of depth 4.

By lemma 7.1, is equivalent to relative to S4. On the other hand, is equivalent to relative to S4.

We conclude that there are exactly seven inequivalent modalities relative to S4.

S5

The modal logic S5 is the system which results from the minimal modal logic K when we supplement its axioms with all substitution instances of the axioms: (T)pp (5)pp

Proposition 10.23 S4S5

All substitution instances of axiom 4 are theorems of S5: 1φφ5[φ/p]2φφT[φ/p]3φφPL 1,24φφ5[φ/p]5φφRK 46φφPL 3,5

Proposition 10.24 KB5S5

All substitution instances of axiom B are theorems of S5

1φφ5[φ/p]2φφT[φ/p]3φφPL 1,2

S5 proves all four reduction laws for pure modalities.

Proposition 10.25 S4 delivers R1, R2, R3, and R4.

It follows that there are no new pure modalities of depth greater than 1, and that it turns delivers exactly three inequivalent pure modalities relative to S5.

Proposition 10.26 There are exactly three inequivalent pure modalities relative to S5.

Proof. There are exactly three inequivalent modalities of depth 1:

There are no new inequivalent modalities of depth 2.

The reason for this is that S5 proves all four reduction laws, which allows the system to collapse every modality of depth 2 into one of depth 1.

We conclude that there are exactly seven inequivalent modalities relative to S4.